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A simple and uni"ed approach is presented for the vibration analysis of a generally
supported beam. The #exural displacement of the beam is sought as the linear combination
of a Fourier series and an auxiliary polynomial function. The polynomial function is
introduced to take all the relevant discontinuities with the original displacement and its
derivatives at the boundaries and the Fourier series now simply represents a residual or
conditioned displacement that has at least three continuous derivatives. As a result, not only
is it always possible to expand the displacement in a Fourier series for beams with any
boundary conditions, but also the solution converges at a much faster speed. The reliability
and robustness of the proposed technique are demonstrated through numerical examples.

( 2000 Academic Press
1. INTRODUCTION

A wide spectrum of techniques has been developed for the vibrations of beams with various
boundary conditions. Among them, the modal superposition technique is probably the
most popular one in which the beam displacement is expressed as a linear combination of
eigenfunctions or mode shapes. Although eigenfunctions generally exist in the forms of
trigonometric and hyperbolic functions, they also include some integration and frequency
constants that have to be determined from boundary conditions. Consequently, each
boundary condition essentially calls for a particular set of natural frequencies and mode
shapes. However, consider even the simplest end conditions (i.e., pinned, clamped, free
and sliding), altogether they can make up 10 di!erent boundary conditions for a beam
and 55 di!erent boundary conditions for a (rectangular) plate. Therefore, the use of
mode shapes as the basis functions could become a very tedious procedure in reality.
Although the frequency equation generally exists for beams with arbitrary boundary
conditions [1], most investigations in the literature have been primarily focused on some
degenerate cases in which the rotational and/or translational springs are arranged in certain
special ways [2}8].

The beam displacement can also be sought in terms of, say, polynomials [9, 10], Fourier
series [11] or other functions [12, 13]. Fourier series have been widely used to determine the
vibrations of simply supported beams. In such cases, all the required derivatives of the
displacement function can be directly calculated from its Fourier series through term-by-
term di!erentiation. For other boundary conditions, however, a Fourier series tends to
become slow converged, if it converges at all, and its derivatives may not be so easily
obtained. Consequently, the Fourier series technique is basically con"ned to the simply
supported boundary conditions.
0022-460X/00/440709#17 $35.00/0 ( 2000 Academic Press
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Chung [14] used a Fourier sine series to represent the axial displacement in estimating
the natural frequencies of circular cylindrical shells under general boundary conditions
which actually only refer to the various combinations of the simplest homogeneous end
conditions. This approach was also used by Lin and Wang [11] to study the vibrations of
generally supported beams. However, as pointed out later in this study, such a technique is
essentially feasible only for the pinned}pinned beams with rotational restraints at ends.
Other works based on Fourier expansions can be found in references [15}17] which have
been well reviewed by Maurizi and Robledo [18].

The objective of this study is to develop a reliable and uni"ed technique for the vibration
analysis of generally supported beams. A brief review is "rst given of the traditional Fourier
series technique and its potential problems in applications. A new technique is then derived
in which the beam displacement is sought as the linear superposition of a Fourier cosine
series and an auxiliary polynomial. The roles of the polynomial are described with su$cient
details. Finally, numerical examples are presented to show the excellent accuracy and
remarkable convergence of the current solution.

2. VIBRATION ANALYSIS OF A BEAM USING FOURIER SERIES

2.1. BASIC EQUATIONS

The governing di!erential equation for the free vibration of a beam is

Dd4w(x)/dx4!oAu2w(x)"0 (1)

or

w@@@@(x)!o
D
u2w(x)"0, (2)

where D, o and A are, respectively, the #exural rigidity, the mass density and the cross-
sectional area of the beam, u is frequency in radian, and o

D
"oA/D (a list of symbols is

given in Appendix A).
The boundary conditions for a generally supported beam can be expressed as

k
0
w"!Dw@@@, K

0
w@"DwA at x"0 (3, 4)

and

k
1
w"!Dw@@@, K

1
w@"DwA at x"¸ (5, 6)

where k
0

and k
1

are the linear spring constants, and K
0

and K
1

are the rotational spring
constants at x"0 and ¸, respectively.

Many familiar boundary conditions may be considered as the special cases of equations
(3}6). For example, the simply supported or pinned}pinned boundary condition can be
easily obtained by assuming that at each end the translational and rotational spring
constants are extremely large and small, respectively.

The generic solution of equation (1) has been well known as a combination of the
trigonometric and hyperbolic functions. However, the integration and frequency
parameters in the eigenfunctions need to be determined from the boundary conditions
which typically involves solving a transcendental equation, a normally tedious process
especially for the elastically restrained beams.
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2.2. TRADITIONAL FOURIER SERIES SOLUTIONS

The solution of equation (1) may also be expanded in a Fourier series. If certain
continuity conditions are satis"ed by the displacement function, some of its derivatives can
be simply obtained through term-by-term di!erentiation. To better understand this, let us
start with a couple of mathematical theorems that are related to the di!erentiation of
Fourier series [19].

Theorem 1. ¸et f (x) be a continuous function de,ned on [0, ¸] with an absolutely integrable
derivative, and let f (x) be expanded in Fourier sine series

f (x)"
=
+

m/1

b
m

sin j
m
x, 0(x(¸ (j

m
"mn/¸) (7)

then

f @(x)"
f (¸)!f (0)

¸

#

=
+

m/1
A
2

¸

[(!1)m f (¸)!f (0)]#j
m
b
mB cos j

m
x. (8)

Theorem 2. ¸et f (x) be a continuous function de,ned on [0, ¸] with an absolutely integrable
derivative, and let f (x) be expanded in Fourier cosine series

f (x)"a
0
#

=
+

m/1

a
m

cos j
m
x, 0(x(¸, (9)

then

f @ (x)"!

=
+

m/1

j
m
a
m

sin j
m
x. (10)

These two theorems basically tell that while a cosine series can always be di!erentiated
term-by-term, this can be done to a sine series only if f (0)"f (¸)"0.

With these in mind, now consider a pinned}pinned beam with rotational end restraints,
as shown in Figure 1. This problem was previously studied by Wang and Lin [11]. For the
sake of completeness, the related results will be brie#y reviewed here. If the displacement
function is expanded in a Fourier sine series

w"

=
+

m/1

A
m

sin j
m
x, 0)x)¸, (11)

then, according to the above theorems, one will have

w@"
=
+

m/1

j
m
A

m
cos j

m
x, 0)x)¸, (12)
Figure 1. A pinned}pinned beam with rotational springs at both ends.
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w@@"!

=
+

m/1

j2
m
A

m
sin j

m
x, 0(x(¸, (13)

w@@@"
B

1
!B

0
¸

#

=
+

m/1
A

2

¸

(B
1
(!1)m!B

0
)!j3

m
A

mB cos j
m
x, 0)x)¸, (14)

and

w@@@@"!

=
+

m/1
A

2

¸

(B
1
(!1)m!B

0
)j

m
!j4

m
A

mB sin j
m
x, 0(x(¸, (15)

where

B
0
"wA(0) and B

1
"wA(¸ ). (16, 17)

It should be noted that the two end points, x"0 and ¸, have been excluded in equations
(13) and (15) because the sine series may not actually converge to the true displacement
values there. This can be explained by referring to Figure 2, where a simple linear function
f (x)"cx#d (c, d'0) is de"ned on [0, ¸]. The extension of f (x) onto [!¸, 0] which is
even for the cosine series leads to a function that is continuous on [!¸, ¸] and has an
identical value at x"$¸. Thus, one obtains a continuous function of period 2¸ whose
Fourier series will converge everywhere. However, this is not necessarily the case for a sine
series which represents the odd extension of f (x) onto [!¸, 0], as shown by the bottom
line. Obviously, the new function is piecewise smooth and the corresponding Fourier series
only converges to zero at x"0 and $¸ regardless of the actual values of f (0) and f (¸).
This argument also applies to the beam displacement and its derivatives. Since the
displacement of the pinned}pinned beam is identically zero at each end, the sine series,
equation (11), will converge over the entire x-axis including x"0 and ¸.

Combining equations (15) and (2) results in

=
+

m/1
G!j

m A
2

¸

(B
1
(!1)m!B

0
)!j3

m
A

mB!o
D
u2A

mH sin j
m
x"0 (18)
Figure 2. An (odd and even) extension of a function f (x) onto [!¸, 0].
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or

A
m
"

j
m

j4
m
!o

D
u2 A

2

¸

(B
1
(!1)m!B

0
)B . (19)

Substitution of equations (12), (16), (17) and (19) into equations (4) and (6) will lead to two
homogeneous equations about B

0
and B

1
in which the coe$cients are the functions of

frequency. Mathematically, the natural frequencies are simply obtained by requiring the
determinant of the coe$cient matrix to vanish [11]. Such a procedure involves solving
a non-linear equation, which may not always be an easy job numerically.

Alternatively, a much simpler procedure can be used as described below. In light of
equation (12), the boundary values of the second derivative, B

0
and B

1
, can be determined

from equations (4) and (6):

B
0
"KK

0
w@(0)"KK

0

=
+

m/1

j
m
A

m
(KK

0
"K

0
/D ), (20)

and

B
1
"!KK

1
w@(¸)"KK

1

=
+

m/1

(!1) m`1j
m
A

m
(KK

1
"K

1
/D). (21)

Substituting equations (20) and (21) into equation (18) gives

=
+

m/1
Gj4mAm

#

2j
m

¸ AKK
1

=
+

m{/1

(!1)m{`mj
m{

A
m{
#KK

0

=
+

m{/1

j
m{

A
m{B!o

D
u2A

mH sin j
m
x"0.

(22)

It should be realized that equation (22) is a standard characteristic equation for a matrix
from which the eigenvalues and eigenfunctions can be determined without any di$culty.
Equation (22) can also be derived from the modal superposition technique if the rotational
springs are viewed as structural features added to the simply supported beam.

2.2. A NEW SOLUTION IN TERMS OF THE FOURIER SERIES

Before proceeding to discuss the problems associated with the traditional Fourier series
solution, let us introduce another important mathematical theorem [19]:

Theorem 3. ¸et f (x) be a continuous function of period 2¸, which has m derivatives, where m-1
derivatives are continuous and the mth derivative is absolutely integrable (the mth derivative
may not exist at certain points). ¹hen, the Fourier series of all m derivatives can be obtained by
term-by-term di+erentiation of the Fourier series of f (x), where all the series, except possibly
the last, converge to the corresponding derivatives. Moreover, the Fourier coe.cients of the
function f (x) satisfy the relations

lim
n?=

a
n
jm
n
" lim

n?=
b
n
jm
n
"0. (23)

As an example, this theorem will be used to examine the convergence of the
previous Fourier sine solution for the beam illustrated in Figure 1. Since the Fourier series,
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equation (11), represents a continuous function of period 2¸ which has a continuous
derivative and piecewise continuous second derivative, one knows from Theorem 3 that the
Fourier coe$cients satis"es

lim
n?=

A
n
j2
n
"0. (24)

The condition that the second derivative is absolutely integrable is obviously not a problem
here because it has been widely used in Rayleigh}Ritz or other energy methods.

For the cases when the beam is allowed to move at any end due to, say, a translational
elastic support, there is no guarantee that the displacement function remains continuous at
the end point(s). Hence, the convergence of the Fourier series, if it converges at all, can be
expected to be much slower. This problem is further compounded by the fact that the
displacement values at the boundaries have to be determined in terms of the third derivative
of the Fourier series by making use of the boundary conditions, equations (3) and (5).

In order to overcome this di$culty, an auxiliary polynomial function will be introduced
here, that is,

w"wN #p, (25)

where the polynomial p is chosen to take all the relevant discontinuities with the original
beam displacement and its three derivatives at the end points so that the &&residual''
displacement wN is a continuous function and has at least three continuous derivatives. If this
new displacement function wN is expanded, say, in a Fourier cosine series

wN "
=
+

m/0

A
m

cos j
m
x, 0)x)¸, (26)

then all the required di!erentiations can be simply carried out on term-by-term basis.
By setting that

p@@@ (0)"w@@@(0)"a
0
, p@@@(¸)"wA@a

1
, (27, 28)

p@(0)"w@(0)"b
0
, p@(¸ )"w@ (¸)"b

1
, (29, 30)

the lowest order polynomial that satis"es equations (27)}(30) can be written as

p"p
1
#p

2
, (31)

where

p@@@
1
"a

0
(1!x/¸)#a

1
x/¸ (32)

and

p@
2
"b

0
(1!x/¸)#b

1
x/¸. (33)

Integrating equation (32) three times, and choosing the integration constants in such a way
that

p@
1
(0)"0, p@

1
(¸ )"0 (34, 35)
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and

P
L

0

p
1

dx"0, (36)

one obtains

p
1
"

a
1

24¸
(x4!2¸2x2 )!

a
0

24¸
(4¸2x2!4¸x3#x4)#

¸3

360
(8a

0
#7a

1
). (37)

Similarly, the second part of the polynomial can be expressed as

p
2
"

b
1

6¸
(3x2!¸2 )#

b
0

6¸
(6¸x!2¸2!3x2) (38)

with

P
L

0

p
2

dx"0. (39)

Substitution of equations (25), (26) and (31) into equation (2) leads to

a
1
!a

0
¸

#

=
+

m/1

j4
m
A

m
cos j

m
x!o

D
u2 A

=
+

m/0

A
m

cos j
m
x#p

1
(x)#p

2
(x)B"0. (40)

Multiplying equation (40) with 2/¸ cos j
m
x (m"0, 1, 2,2) and integrating it from 0 to

¸ results in

j4
m
A

m
!o

D
u2(A

m
#Pm)"0, m"1, 2,2 (41)

and

a
1
!a

0
¸

!o
D
u2A

0
"0, (42)

where

P
m
"

2

¸ P
L

0

p cos j
m
x dx"

2

¸ A!
a
1
(!1)m!a

0
j4
m

#

b
1
(!1)m!b

0
j2
m

B . (43)

In equation (43) the values of the "rst and third derivatives at the boundaries need to be
determined from equations (3)}(6). In light of equations (25)}(31), (37) and (38), it is not
di$cult to obtain that

kL
0A

=
+

m/0

A
m
#

8¸3a
0

360
#

7¸3a
1

360
!

b
0
¸

3
!

b
1
¸

6 B"!a
0
, (44)

kL
1A

=
+

m/0

(!1)mA
m
!

7¸3a
0

360
!

8¸3a
1

360
#

b
0
¸

6
#

b
1
¸

3 B"a
1
, (45)

KK
0
b
0
"A!

=
+

m/1

j2
m
A

m
!

a
0
¸

3
!

a
1
¸

6
#

b
1
¸

!

b
0
¸ B (46)
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and

KK
1
b
1
"!A

=
+

m/1

(!1)m`1j2
m
A

m
#

a
0
¸

6
#

a
1
¸

3
#

b
1
¸

!

b
0
¸ B . (47)

Equations (44)} (47) can be rewritten in more concise form as

Ha6 "
=
+

m/0

Q
m
A

m
, (48)

where

a6 "Ma
0
, a

1
, b

0
, b

1
NT, (49)

H"

8kL
0
¸3

360
#1

7kL
0
¸3

360

!kL
0
¸3

3

!kL
0
¸

6

7kL
1
¸3

360

8kL
1
¸3

360
#1

!kL
1
¸

6

!kL
1
¸

3

¸

3

¸

6
KK

0
#

1

¸

!1

¸

¸

6

¸

3

!1

¸

KK
1
#

1

¸

(50)

and

Q
m
"M!kL

0
(!1)mkL

1
!j2

m
(!1)mj2

m
NT. (51)

Combining equations (41), (42) and (48) gives

j4
m
A

m
!o

D
u2 AAm

#

=
+

m{/0

S
mm{

A
m{B"0, m"1, 2, 3,2 (52)

and

=
+

m{/0

cTH~1Q
m{

A
m{
!o

D
u2A

0
"0, (53)

where

c"M!1/¸ 1/¸ 0 0NT, S
mm{

"PT
m
H~1Q

m{
(54, 55)

and

P
m
"

2

¸ G
1

j4
m

(!1)m`1

j4
m

!1

j2
m

(!1)m

j2
m
H
T
. (56)
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If the Fourier series is truncated to m"M, equations (52) and (53) can be rewritten as

(K!o
D
u2M)A"0, (57)

where

A"MA
0
, A

1
,2, A

M
NT, (58)

K"

cTH~1Q
0

cTH~1Q
1

2 cTH~1Q
m{

2 cTH~1Q
M

0 j4
1

2 0 2 0
F F 2 F 2 F
0 0 2 j4

m
d
mm{

2 0
F F 2 F 2 F
0 0 2 0 2 j4

M

(59)

and

M"

1 0 2 0 2 0
S
10

1#S
11

2 S
1m{

2 S
1M

F F 2 F 2 F
S
m0

S
m1

2 d
mm{

#S
mm{

2 S
mM

F F 2 F 2 F
S
M0

S
M1

2 S
Mm{

2 1#S
MM

. (60)

Comparing equation (57) with equation (22), one will notice that the current procedure has
led to a di!erent explanation of the physical impact of the boundary springs: instead of
a!ecting the sti!ness matrix, they change the e!ective mass of the beam in the current
formulation.

The natural frequencies and eigenvectors can now be easily determined by solving
a standard matrix eigenproblem. The eigenvectors are actually the expansion coe$cients of
the Fourier series from which, however, the mode shapes are readily obtained:

w"

M
+

m/0

(cos j
m
x#XTS1

m
)A

m
, (61)

where

X"M1 x x2 x3 x4NT, S1
m
"LH~1Q

m
(62, 63)

and

L"

8¸3/360 7¸3/360 !¸/3 !¸/6
0 0 1 0

!¸/6 !¸/12 !1/2¸ 1/2¸
1/6 0 0 0

!1/24¸ 1/24¸ 0 0

. (64)
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Finally, making use of the equation

P
L

0

w2 dx"¸, (65)

the normalized mode shape can be written as

/"

M
+

m/0

(cos j
m
x#XTS1

m
)AM

m
, (66)

where

AM
m
"A

m
/s, m"0, 1, 2,2,M, (67)

s"A +
m,m{/0

(d
0m

d
0m{

#1
2
d
mm{

#S1 T
m
X1 S1

m{
#2CT

m
S1
m{

)A
m
A

m{B
1@2

, (68)

X1 "
1

¸ P
L

0

XXT dx"MXM
ij
N, (XM

ij
"¸i`j~2/(i#j!1)) (69)

and

C
m
"

1

¸ P
L

0

X cos j
m
x dx

"G
G0 !

1#(!1)m`1

j2
m
¸

2(!1)m

j2
m

6[1!(!1)m]#3(!1)mj2
m
¸2

j4
m
¸

[!24#4j2
m
¸2](!1)m

j4
m

H
T
, m"1, 2,2, M.

G1
¸

2

¸2

3

¸3

4

¸4

5 H
T

m"0.

(70)

Because the Fourier series now represents a &&conditioned'' displacement having at least
three continuous derivatives, one can expect it to converge at a faster speed which,
according to Theorem 3, should satisfy

lim
n?=

A
n
j4
n
"0. (71)

Actually, for a generally supported beam, the convergence of the Fourier series solutions
can be estimated in a more direct manner. Making use of equations (19) and (41), the
expansion coe$cients can be expressed as

A
m
"

2j3
m

(j4
m
!o

D
u2)¸ A

B
1
(!1)m!B

0
j2
m

![w(¸)(!1)m!w(0)]B (72)
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and

A
m
"

o
D
u2P

m
j4
m
!o

D
u2

"

2o
D
u2/j2

m
(j4

m
!o

D
u2)¸ A!

a
1
(!1)m!a

0
j2
m

#b
1
(!1)m!b

0B . (73)

In equation (72), the possible displacement discontinuities at the end points are also taken
into account. If all the involved boundary constants are somehow known a priori, then
equations (72) and (73) can be, respectively, used to estimate the convergence rates of the
traditional and current Fourier solutions. In reality, however, the boundary constants have
to be determined from equation (48) in terms of the Fourier coe$cients. Each time the
displacement is di!erentiated, the convergence speed of the corresponding Fourier series is
slowed by a factor of j

m
. Therefore, it can be concluded that the highest order of the

derivatives appeared in the boundary conditions actually controls the convergence speed of
the mode shape and natural frequency. For instance, if a beam is simply supported having
only rotational restraints, the "rst derivative of the Fourier series has to be used to
determine the values of the second derivatives or &&bending moments'' at the boundaries.
Thus, according to equation (72), the natural frequencies and mode shapes will both
converge at the speed j2

m
. It is also clear that, if the beam rests on a translational spring at

any end, equation (11) may not actually converge at all. In contrast, the solution in the form
of equation (25) can still converge at the speed of j4

m
.

It must be pointed out that the beam displacement can also be expanded in a Fourier sine
series. Although a sine series is perhaps more suited for pinned}pinned beams with
rotational restraints, it theoretically converges at a slower speed, for beams with
a translational restraint at any end.

3. RESULTS AND DISCUSSIONS

First consider a pinned}pinned beam with rotational constraints at both ends, as shown
in Figure 1. Assume the spring constant is very large, say, KK

0
¸"1010, at one end. Table 1

shows the "rst eight frequency parameters, k
i
"a/n(u

i
JoA/D)1@2, for the various

sti!nesses at the other end. For the two extreme sti!nesses, KK
1
¸"0 and 1010, this problem

essentially turns into the classical clamped}pinned and clamped}clamped cases for that the
"rst four frequency parameters are, respectively, as follows [20]: k

i
"1)24988, 2)25, 3)25,

4)25 and k
i
"1)50562, 2)49975, 3)50001, 4)5. The current solution has shown an excellent

agreement with them as evidenced in Table 1.
In the above calculations, the Fourier series is truncated to M"20. To examine the

convergence of the solution, Table 2 compares the "rst 10 frequency parameters of the
TABLE 1

Frequency parameters, k
i
"¸/n (u

i
JoA/D)1@2, for various sti+nesses

of the rotational springs

k
i
"¸/n(u

i
JoA/D)1@2

Mode KK
1
¸"0 KK

1
¸"1 KK

1
¸"10 KK

1
¸"100 KK

1
¸"1010

1 1)24988 1)28656 1)4102 1)49137 1)50562
2 2)25005 2)27081 2)37138 2)47681 2)49975
3 3)25014 3)26491 3)34927 3)46884 3)50001
4 4)25032 4)26175 4)3337 4)46108 4)5



TABLE 2

Frequency parameters, k
i
"¸/n (u

i
JoA/D)1@2, for various

numbers of terms in Fourier series

k
i
"¸/n(u

i
JoA/D)1@2

Mode M"5 M"10 M"15 M"20

1 1)50563 1)50562 1)50562 1)50562
2 2)49985 2)49976 2)49975 2)49975
3 3)50392 3)50003 3)50001 3)50001
4 4)5073 4)5002 4)50001 4)5
5 * 5)50044 5)50005 5)5
6 * 6)50289 6)5001 6)50002
7 * 7)50421 7)50045 7)50004
8 * 8)52423 8)5007 8)50014
9 * 9)52852 9)50251 9)50022

10 * * 10)5033 10)5007

TABLE 3

Frequency parameters, k
i
"¸/n (u

i
JoA/D)1@2, for various numbers

of terms in Fourier series

k
i
"¸/n(u

i
JoA/D)1@2

Mode M"50 M"75 M"100 M"150

1 1)50984 1)49997 1)53034 1)53753
2 2)52008 2)51498 2)50879 2)51103
3 3)52993 3)51930 3)51461 3)50949
4 4)53881 4)52850 4)52151 4)50753
5 5)54829 5)53089 5)52319 5)51528
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clamped}clamped beam which are estimated by using di!erent numbers of terms in the
Fourier series. It is seen that the Fourier series converges so fast that just a few terms can
lead to an excellent prediction. In comparison, as illustrated in Table 3, the traditional
solution obtained from equation (22) does not converge nearly as well even though this
boundary condition may actually represent an ideal scenario for it: the displacement
vanishes at both ends.

As aforementioned, the eigenfunctions or mode shapes can be claculated from equation
(66) with an accuracy (or more appropriately, convergence speed) comparable to that of the
natural frequencies. In Figures 3}6, the mode shapes are plotted for the "rst four modes of
the clamped}clamped beam. The classical solution for this case is well known as [20]

/
i
"cosh

nk
i
x

¸

!cos
nk

i
x

¸

!p
i Asinh

nk
i
x

¸

!sin
nk

i
x

¸ B, (74)

where

p
i
"

cosh nk
i
!cos nk

i
sinh nk

i
!sin nk

i

. (75)



Figure 3. The mode shape of the "rst mode: **, equation (74); } } }, equation (66); M"1.

Figure 4. The mode shape for the second mode: **, equation (74); } } }, equation (66); M"2.

Figure 5. The mode shape for the third natural frequency:**, equation (74); } }}, equation (66); (a) M"3;
(b) M"4.
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Figure 6. The mode shape for the fourth natural frequency:**, equation (74); } } }, equation (66); (a) M"4;
(b) M"5.

TABLE 4

Fundamental natural frequency, k
1
"(¸2u

1
JoA/D)1@2,

of a beam with various combinations of the rotational and
translational springs

kL
1
¸3

KK
0
¸ 0)01 1 100

0)01 0)4948 1)3134 2)9901
1 1)2520 1)5358 3)1085

100 1)8583 1)9940 3)6134
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In each of the plots, M denotes the number of cosine terms actually used in the Fourier
series, and the curves for any larger M's are not presented simply because they then become
virtually identical to the classical solution. All these results have indicated that the mode
shapes can also be accurately obtained by taking only a few terms in the Fourier series.
However, the remarkable convergence of the current solution is perhaps best manifested in
Figures 5 and 6 where only one term has shown a great impact.

Let us now consider two examples that involve both rotational and translational
restraints. The "rst one is concerned with a pinned}free beam with a rotational spring
at the pinned end and a translational spring at the free end. Table 4 lists the (dimensionless)
fundamental frequencies of the beam for the various combinations of the spring constants.
The result are almost exactly the same as those given by Maurizi et al. [5]. The
second example deals with a beam with both translational and rotational spring supports at
each end. Assuming kL

0
¸3"kL

1
¸3"1, listed in Table 5 are the "ve lowest natural



TABLE 5

Frequency parameters, k
i
"(¸2u

i
JoA/D)1@2, of a beam

with various sti+nesses of the rotational springs

KK
1
¸"KK

0
¸

Mode 0)01 1 100

1 1)1843 1)18564 1)1883
2 1)57925 2)23332 3)14418
3 4)75304 5)06326 6)22722
4 7)8607 8)07739 9)33698
5 11)0009 11)1628 12)4499

TABLE 6

Frequency parameters, k
i
"(¸2u

i
JoA/D)1@2, calculated using di+erent numbers of terms in

the Fourier series, KK
1
¸"KK

0
¸"100

Mode M"5 M"10 M"20 M"40 Reference [1]

1 1)188301 1)188301 1)188301 1)188301 1)188301
2 3)14418 3)14418 3)14418 3)14418 3)144179
3 6)22726 6)227224 6)227221 6)22722 6)22722
4 9)33717 9)337013 9)336975 9)336971 9)336969
5 12)4514 12)45001 12)44990 12)44988 12)44988
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frequencies, k
i
"(a2u

i
JoA/D)1@2, for the three di!erent rotational sti!nesses,

KK
1
¸"KK

0
¸"0)01, 1, 100. This problem was previously studied in reference [1] and an

excellent agreement has been observed between the two solutions. The remarkable
convergence of the current solution is again demonstrated in Table 6 for this elastically
restrained beam.

4. CONCLUSIONS

A new simple and uni"ed approach has been presented for the dynamic analysis of
a beam with general boundary conditions. The beam displacement is sought as the
superposition of a Fourier series and an auxiliary polynomial that is used to take care of the
discontinuities with the original displacement function and its related derivatives. The
modal parameters of the beam can be readily and systematically obtained from solving
a standard matrix eigenproblem, instead of the non-linear hyperbolic equations as in the
traditional techniques.

It has been shown through numerical examples that the natural frequencies and mode
shapes can both be accurately calculated for beams with various boundary conditions. The
remarkable convergence of the current solution is demonstrated both theoretically and
numerically. It should be noted that the proposed technique can be easily extended to
certain two-dimensional structures such as plates and shells with general boundary
conditions and the fast convergence of the Fourier series makes the extension numerically
viable.
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APPENDIX A: NOMENCLATURE

A cross-sectional area
A

m
Fourier coe$cient

B
0
, B

1
"w@@(0), wA(¸)

D #exural rigidity
K

0
, K

1
rotational sti!nesses at x"0 and ¸ respectively

KK
0
, KK

1
"K

0
/D, K

1
/D

k
0
, k

1
translational sti!nesses at x"0 and ¸ respectively

kL
0
, kL

1
"k

0
/D, k

1
/D

¸ beam length
M number of cosine terms used in the Fourier series
p polynomial function
p
1
, p

2
polynomials

w beam displacement
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wN conditioned beam displacement
a
0
, a

1
"w@@@(0), w@@@(¸ )

b
0
, b

1
"w@ (0), w@ (¸)

j
m "

mn

¸

k
i "¸/n(u

i
JoA/D)1@2 or (¸2u

i
JoA/D)1@2

o mass density
u frequency in radian
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